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The Penna bit-string model successfully encompasses many phenomena of population evolution, including
inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna
model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control
only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The
social interactions among individuals are generated by both inheritance and activity-based preferential increase.
Then we study the properties of the complex network generated by the modified Penna model. We find that the
resulting complex network has a small-world effect and the assortative mixing property.
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In recent years, the usage of computational models has
turned into a major trend in the discussion of problems in
population dynamics and evolutionary theory. In 1995, a bit-
string computer simulation model for population evolution
was introduced by Penna �1�, which encompasses the inher-
itance, mutation, evolution, and aging phenomena. The
Penna model has been so successful that it has rapidly estab-
lished itself as a major model for population simulations.

On the other hand, complex networks composed of a large
set of interconnected vertices of various kinds are ubiquitous
in nature and society �2�. Examples include the Internet, the
World Wide Web, communication networks, food webs, bio-
logical neural networks, electrical power grids, social and
economic relations, coauthorship and citation networks of
scientists, cellular and metabolic networks, etc. In recent
years, many properties of complex networks have been re-
ported in the literature. Notably, it is found that many com-
plex networks show the small-world property �3�, which im-
plies that a network has a high degree of clustering as in a
regular network and a small average distance between verti-
ces as in a random network. Another significant recent dis-
covery is the observation that many large-scale complex net-
works are scale-free �4�. This means that the degree
distributions of these complex networks follow a power-law
form P�k��k−� for large k, where P�k� is the probability that
a vertex in the network is connected to k other vertices and �
is a positive real number determined by the given network. It
is also found that many social networks exhibit assortative
mixing, the tendency for vertices in networks that have many
connections to be connected to other vertices with many con-
nections �5,6�.

If we consider social interactions among individuals in the
Penna model, the individuals �vertices� and the social inter-
actions �links� will form a complex network. In this paper,
we first make some modifications on the Penna model. We
modify the Verhulst factor to control the birth of individuals

in the population, and introduce activity-based preferential
reproduction of offspring in the Penna model, that is, the
individuals with higher activity will have higher probability
to be selected to reproduce offspring. The social interactions
among individuals are generated by both inheritance and
activity-based preferential establishment, that is, the off-
spring will inherit a part �or all� of their parent’s social in-
teractions at birth, and when the individual becomes mature,
if it has higher activity, it will have higher probability to
establish some new social interactions with other individuals.
Thus, with the evolution of the Penna model, it will create a
complex network with evolution and aging, two common
properties observed in many real networks. Then we will
study the properties of the network generated by the modi-
fied Penna model from the point of view of complex network
theory.

The purpose of this paper is twofold. First, we try to
mimic by computer simulation the evolution of population
and the formation of social interactions in a society. Second,
we provide a network model with many important properties
observed in real networks, such as evolution, aging, small-
world effect, and the assortative mixing property.

We study the asexual Penna model in this paper. In the
asexual version of the standard Penna model, each individual
is represented by a bit-string of 32 bits �32 bits of 0 and 1�,
which contains the information of when a hereditary disease
will appear, and plays the role of a chronological genome.
Each bit corresponds to a given age, and each individual can
live at most for 32 time steps �“years”�. The presence of a
1 bit at a given position means that the individual will suffer
from the effects of a genetic disease in that and the following
years. The rules for the individual to stay alive are �i� the age
of the individual is less than or equal to 32; �ii� the number
of inherited diseases already taken into account at current
age is lower than a threshold T; and �iii� due to the restriction
of space and food, at each time step, the individual will stay
alive with probability V=1−N�t� /Nmax �the Verhulst factor�,
where Nmax is the maximum population size allowed by the
environment and N�t� is the current population size. There is
a minimum reproduction age R, after which the individual
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can generate offspring. The genome of the offspring is a
copy of the parent’s genome, with some random mutations.
On short timescales, nearly all mutations are bad, so only
deleterious mutation is considered: if a 0 bit is chosen in the
parent’s genome, it is mutated to 1 in the offspring genome,
while if a 1 bit is chosen in the parent’s genome, it stays 1 in
the offspring genome.

The Verhulst factor in the Penna model takes the idea
from the population growth model introduced by Verhulst in
1844. In that model, an environmental carrying capacity
Nmax is introduced and the growth rate of a population is
given by

dN/dt = rN�1 − N/Nmax� , �1�

where r is the intrinsic relative growth rate.
However, the Verhulst factor for controlling the popula-

tion size in the Penna model is too severe. Even if the popu-
lation size is much smaller than the environmental carrying
capacity Nmax, this would predict that many individuals die
in each year “due to the limit of space and food”. The exist-
ing simulation results indicate that the population size is usu-
ally very small compared to Nmax �in Ref. �7�, the simulation
results show that the population size never even reaches
0.3Nmax�, and the individuals usually die at a very young age
�in Ref. �8�, the simulation results show that almost all the
individuals die below the age of 20�. These results are
mainly “due to the restriction of space and food”, although
there is �more than� enough space and food. It should be
noted that some other researchers also argued that the Ver-
hulst factor is too severe in the Penna model �9�.

In fact, it seems from Eq. �1� that it is the population
growth rate rather than the rate of individuals kept alive in
each time step �in the Penna model, it is the latter case� that
is proportional to the Verhulst factor. Here we use a modified
form of the Verhulst factor in the Penna model. We assume
that an individual will die only when its age reaches 32 or
the number of active diseases reaches the threshold T. We
also assume that in each year, the mature individuals will
produce int�N�1−N /Nmax�� offspring. It is easy to show that
the population size will approach, but never exceed, Nmax, if
the initial population size is N0�Nmax.

In the standard Penna model, all the mature individuals
have the same probability to reproduce offspring. But, in
fact, the reproductive activity is related to the individual’s
health condition and age. Usually when exceeding the mini-
mum reproductive age, the young and healthy individual has
higher reproductive activity. In this paper, we use the follow-
ing function to express the dependence of activity on age:

A1 = F�a� = �0, 0 � a � R ,

1 − exp��a − 32�/2� , R � a � 32,
	 �2�

where a is the age of an individual. We use the following
function to express the dependence of activity on health:

A2 = H�m� = exp�− m/2�, 0 � m � T , �3�

where m is the number of active diseases at current age. We
assume that the total activity depends on the product of A1

and A2, that is, the higher the value of A=F�a�H�m�, the
higher the probability of the individual to be selected to re-

produce offspring. It should be noted that in Refs. �6,10�, the
authors also considered the health-controlled birth rate in the
Penna model.

If we consider social interactions among individuals in the
Penna model, the individuals �vertices� and the social inter-
actions �links� will form a complex network. We summarize
the evolution rules for the networks studied in this paper as
follows.

�i� Initialization. We start from N0�1�N0�Nmax� indi-
viduals. Randomly, each individual has �1,T� diseases at ran-
domly selected positions in the bit-string and each individual
is at the age in the range of �1,32�. The individuals are ran-
domly interconnected with probability p1, where p1 satisfies
the inequality p1� ln�N� / �N−1�, so that the resulting ran-
dom network �random graph� is fully connected �11�. In the
following evolution, we assume that the connection density
is approximately fixed, that is, the total links in the network
are approximately equal to int�p1N�N−1� /2�.

�ii� Death. In each time step, the individuals with age
larger than 32 �have reached the age 33� or with the number
of active diseases having reached the threshold T will die,
and the dead individuals and all the interactions connected to
them will be removed.

�iii� Creating new interactions. In each time step, we cre-
ate a small number of new social interactions among existing
individuals. We assume the number of newly created inter-
actions is int�p2�N�N−1��� with p2 being a small probability.
When choosing two existing individuals to which a new in-
teraction is connected, we assume that two individuals are
chosen from among all existing ones, with the probability
��i , j�=AiAj / �
m,nAmAn�, where Ai is the activity of indi-
vidual i. That is, if two individuals both have high activities,
they will have a high probability of establishing a new social
interaction between them.

�iv� Birth. In each time step, the existing mature individu-
als will reproduce int�N�1−N /Nmax�� offspring. We choose
an individual to reproduce offspring with the probability
��i�=Ai /
 jAj. That is, the higher the activity of an indi-
vidual, the higher is the probability to be selected to repro-
duce offspring. This is the effect of activity-based preferen-
tial reproduction. The offspring genome is a copy of the
parent’s one, and with probability p3 a deleterious mutation
will occur.

An offspring will establish an interaction with the parent,
and each social interaction of the parent will be inherited
with probability 0.9 if the current total interactions L
� int�p1N�N−1� /2�, and with probability 1 if L
� int�p1N�N−1� /2�.

Remark 1. In rule �ii�, in principle, there is a possibility
that some individuals become isolated due to the removal of
links. We assume that isolated individuals without any social
interactions cannot survive, so we simply remove these indi-
viduals.

Remark 2. Rule �iii� is motivated by the observation that
usually individuals with higher activity have more social ac-
tivities, and thus have more opportunities to establish new
social interactions with others. This is a kind of activity-
based preferential establishment of social interactions. If
there is already a link between two selected individuals, then
we will do nothing.
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Remark 3. In our simulations, we found that if the off-
spring inherit all the interactions of their parents, the popu-
lation will evolve to an almost fully connected network, but
if the offspring inherit each interaction with probability
smaller than 1, say 0.9, the number of interactions will de-
crease gradually. So, we design an adaptive inherited rule in
�iv� to make the total number of interactions approximately
equal to int�p1N�N−1� /2�.

The above rules are illustrated by numerical simulations
as follows. For a wide range of parameters, we can obtain
similar results, and we present some representative results
here. We consider a network with parameters N0=1000,
Nmax=1000, R=8, T=4, p1=0.1, p2=0.0001, and p3=0.1.
We run the simulation several times, and show representative
results here. In principle, there is a probability that the re-
sulting network becomes unconnected, but with these param-
eters this situation does not occur in our simulations. The
above rules are iterated 20000 times to reach a stationary
population. In several independent runs, we found that the
resulting networks always have 998 or 999 vertices, which
are only slightly different from Nmax. In the following, we
sometimes do not differentiate the resulting network size and
Nmax explicitly.

We next analyze some properties of the resulting network.
We first calculate the average path length �APL� �2� of the
network. The APL is obtained by averaging the APLs of
networks generated by 10 independent runs with the above
parametric values �in fact, the APLs are nearly identical in
each run�. The value of APL for the network is 2.0349,
which is very small compared to the network size. For the

purpose of comparison, we also computed the APL for net-
works with Nmax in the range �100, 1000� �other parameters
are the same�, and we found that the average path lengths are
all small and decrease as the network size increases from 100
to 1000 vertices �Fig. 1�a��.

The evolution of the clustering coefficient �2� of the net-
work is plotted in Fig. 1�b�. We can see from this figure that
the clustering coefficient increases rapidly from a small value
�in the initial random network, the clustering coefficient is
approximately equal to p1� to a large value, and the cluster-
ing coefficient fluctuates around about 0.45.

As we know, “small-world networks” are characterized by
a high degree of clustering and a small average path length
which scales logarithmically with the number of vertices �2�.
We can see from the above analysis that the network has a
large clustering coefficient and a small average path length,
and the average path length decreases with increasing net-
work size, so the network is a small-world network.

We plot the degree distribution �2� of the resulting net-
work in Fig. 2. The distribution looks like a Poisson distri-
bution, but it is “fatter” on the right-hand side of the peak
than on the left-hand side. In the above rules, the reproduc-
tion of offspring can be seen as a kind of preferential attach-
ment in complex network theory �the increase of new inter-
actions is also a kind of preference�. But the offspring
genome is mainly a copy of the parent’s one: if the parent
has good health, the offspring will also have good health
�and high activity on becoming mature� with a high probabil-
ity, and this will increase the number of individuals with high
activity, so in the attachment the preferential effect will be
decreased and the random effect will be increased. Due to
the effect of mutation, the offspring who has a healthy parent
will lose good genome with a certain probability, which will
also increase the randomness of the attachment. So, the de-
gree distribution should be a result of the combination of
preferential attachment �power-law distribution� and random
attachment �Poisson distribution�. This explains the degree
distribution in Fig. 2. It is known that the distribution of
many real networks can also be seen as a combination of
power-law and Poisson distributions.

Assortative mixing is also an important property of many
networks, especially social networks. A network is said to
show assortative mixing if the vertices in the network that
have many connections tend to be connected to other vertices
with many connections �5,12�. Assortative mixing can have a
profound effect on the properties of a network. For example,

FIG. 1. �Color online� �a� The network average path length
�APL� decreases as network size increases from 100 to 1000 verti-
ces. �b� The evolution of the clustering coefficient.

FIG. 2. �Color online� The degree distribution.
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it is found that assortative networks are more robust to re-
moval of their highest degree vertices than the disassortative
ones. To measure the assortative property of a network, we
can calculate the assortative coefficient. For mixing by ver-
tex degree in an undirected network, the assortative coeffi-
cient is �5,6�

r =

M−1

i

jiki − �M−1

i

1
2 �ji + ki��2

M−1

i

1
2 �ji

2 + ki
2� − �M−1


i

1
2 �ji + ki��2

, �4�

where ji ,ki are the degrees of the two vertices at the ends of
the ith edge, with i=1,2 , . . . ,M. The coefficient is in the
range −1�r�1, and if r is positive, the network is assorta-
tive.

For a network with Nmax=500 created by the above evo-
lution rules �13�, we calculate the value of r according to Eq.
�4�, and obtain that r=0.4952, which indicates strong assor-
tative mixing in this network. The scatter plot of the degrees
of pairs of vertices at the two ends of the links is shown in
Fig. 3�a�, and the histogram of the degree differences be-
tween pairs of vertices at the two ends of the links is shown
in Fig. 3�b�. From this figure, we see that the network shows
assortative mixing. In fact, in the evolution of the population,
there are individuals removed in each time step, so the evo-
lution of the network is robust to the removal of vertices
�including highest degree vertices�, and has self-repair abil-
ity.

In summary, in this paper, we studied the evolution of a
modified Penna model, and showed that when taking the
social interactions into account, the individuals form a com-
plex network. The properties of the network were studied by
computer simulation. Numerical results indicate that the net-
work has emergent small-world and assortative mixing prop-
erties. The replication rule is responsible for the small world
effect, and the Penna model is responsible for other proper-

ties, such as limited node number, aging effect, and the de-
gree distribution, of the network. This paper, to some extent,
mimics the evolution and the formation of social interactions
in a society and also provides a network model with many
properties observed in real networks, such as evolution, ag-
ing, small-world effect, and assortative mixing property. We
only studied the asexual case of the Penna model in this
paper; the sexual case, as well as other properties �14� and
theoretical analysis of the generated network, will be the
subject of future research.
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FIG. 3. �Color online� �a� Scatter plot of the degrees of pairs of
vertices at the two ends of the links. �b� The histogram of the degree
differences between pairs of vertices at the two ends of the links.
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